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On some integrable systems related to the Toda lattice
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Centre for Complex Systems and Visualization, University of Bremen, Universitätsallee 29,
28359 Bremen, Germany

Received 9 December 1996

Abstract. We discuss some of the integrable lattices introduced recently by R Yamilov. We
demonstrate that they are closely related to the usual Toda lattice by means of a sort of Bäcklund
transformations. We also apply the general procedure of integrable discretization and obtain their
integrable finite-difference approximations. These novel integrable discrete-time systems are also
related to the discrete-time Toda lattice by means of the Bäcklund transformations. The whole
construction exploits the tri-Hamiltonian structure of the Toda lattice.

1. Introduction

In a recent paper, Yamilov [1] gave a complete list of lattice systems of the form

ẍk = f (ẋk, xk+1, xk, xk−1)

having infinitely many local conservation laws (in fact, he demonstrated that the existence
of only two conservation laws of high enough orders leads to the same list of lattices). Up
to simple transformations the list consists of only two items, one of them being the family
of lattices

ẍk = R(ẋk)[g(xk+1− xk)− g(xk − xk−1)] (1.1)

whereR(u) = εu2+αu+β and the functiong(x) satisfies the ordinary differential equation
g′ = εg2+ γg + δ.

Clearly this family generalizes the most celebrated and well-studied integrable lattice
system, the Toda lattice:

ẍk = exp(xk+1− xk)− exp(xk − xk−1) (1.2)

which corresponds toR(u) = 1, g(x) = exp(x), g′ = g.
We will consider two more complicated representatives of the family (1.1) (which

exhaust a large part of the whole family upon linear changes of the independent and
dependent variables). Namely, we consider two cases: first,R(u) = u, g(x) = exp(x),
g′ = g and second,R(u) = −u2, g(x) = coth(x), g′ = −g2 + 1. In other words, we
consider the lattices

ẍk = ẋk(exp(xk+1− xk)− exp(xk − xk−1)) (1.3)

ẍk = −ẋ2
k (coth(xk+1− xk)− coth(xk − xk−1)). (1.4)
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(Note under the rescalingx 7→ νx and subsequent sendingν → 0 the last system turns into

ẍk = −ẋ2
k

(
1

xk+1− xk −
1

xk − xk−1

)
also belonging to the family (1.1) withR(u) = −u2, g(x) = 1/x, g′ = −g2. We will not
consider this system separately, always having in mind that it is a limiting case of (1.4).)

Our aim here is to point out an unexpected and surprising circumstance; both lattices
(1.3) and (1.4) turn out to be closely related to the usual Toda lattice. More precisely we will
demonstrate that three lattices (1.2), (1.3) and (1.4) are three different appearances of one
and the same tri-Hamiltonian system. They correspond to three different parametrizations
of the phase variables of this system by means of canonically conjugated coordinates and
momenta, resulting in three different (compatible) invariant Poisson structures.

Moreover, this observation may be prolonged to the level of integrable discretizations.
In the following difference equationsxk = xk(t) are supposed to be functions of the discrete
time t ∈ hZ, and x̃k = xk(t + h), x˜ k

= xk(t − h). In [2] the author introduced a method
of constructing integrable discretizations of the systems allowing anr-matrix interpretation,
and applied this method to the Toda lattice (1.2). An outcome consisted of two different
discretizations,

exp(x̃k − xk)− exp(xk − x˜ k
) = h2(exp(x

˜ k+1− xk)− exp(xk − x̃k−1)) (1.5)

and

exp(x̃k − 2xk + x˜ k
) = 1+ h2 exp(x

˜ k+1− xk)
1+ h2 exp(xk − x̃k−1)

. (1.6)

We will demonstrate that exploiting the tri-Hamiltonian structure of the corresponding
discrete-time system, one can also obtain discretizations for (1.3) and (1.4)

exp(x̃k − xk)− 1

exp(xk − x˜ k
)− 1

= 1+ h exp(x
˜ k+1− xk)

1+ h exp(xk − x̃k−1)
(1.7)

and

coth(x̃k − xk)− coth(xk − x˜ k
) = coth(x

˜ k+1− xk)− coth(xk − x̃k−1) (1.8)

respectively.
Finally, we will consider the explicit integrable discretizations for all three lattices,

which arise if one replaces on the right-hand sides of the above difference equationsx
˜ k+1,

x̃k−1 by xk+1, xk−1, respectively. We will demonstrate that such a change leads to a different
tri-Hamiltonian discrete-time system, whose natural phase space is that of therelativistic
Toda lattice, and elaborate the corresponding parametrizations.

All the systems above (continuous and discrete-time ones) may be considered either on
an infinite lattice (k ∈ Z), or on a finite one (16 k 6 N ). In the last case one of the
two types of boundary conditions may be imposed: open-end (x0 = ∞, xN+1 = −∞) or
periodic (x0 ≡ xN , xN+1 ≡ x1). We shall only be concerned with the finite lattices here,
consideration of the infinite ones being to a large extent similar.

2. Newtonian equations of motion: Lagrangian and Hamiltonian formulations

All the equations introduced in the previous section, both continuous- and discrete-time, are
written in the Newtonian form:

ẍk = 8k(ẋ, x) or 9k(x̃, x, x˜
) = 0

respectively. They all turn out to admit a Lagrangian formulation.
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Recall that in the continuous time case Lagrangian equations are given by

d

dt

∂L
∂ẋk
− ∂L
∂xk
= 0 (2.1)

while their discrete-time analogue is given by

∂(3(x̃, x)+3(x, x
˜
))/∂xk = 0. (2.2)

Further, recall that Lagrangian formulation also implies a possibility of introducing a
Hamiltonian one. Namely, in the continuous time case one defines momentapk canonically
conjugated to the coordinatesxk by

pk = ∂L/∂ẋk. (2.3)

Then the flow defined by (2.1), being expressed in terms of(x, p), preserves the standard
symplectic form

∑
dxk ∧ dpk on the phase spaceR2N(x, p). Moreover, this flow may be

written in a canonical form

ẋk = ∂H/∂pk ṗk = −∂H/∂xk (2.4)

the Hamiltonian functionH(x, p) being given by

H =
N∑
k=1

ẋkpk − L. (2.5)

Analogously, in the discrete-time case the momentapk canonically conjugated toxk are
given by

pk = ∂3(x, x˜
)/∂xk. (2.6)

Then the map(x, x
˜
) 7→ (x̃, x) induces a symplectic map(x, p) 7→ (x̃, p̃) of the phase

spaceR2N(x, p), i.e. a map preserving the standard symplectic form
∑

dxk ∧ dpk. Note
that (2.6) implies that the equations (2.2) may be presented as

pk = −∂3(x̃, x)/∂xk (2.7)

p̃k = ∂3(x̃, x)/∂x̃k. (2.8)

3. Simplest flow of the Toda hierarchy and its tri-Hamiltonian structure

All three lattices (1.2), (1.3) and (1.4) arise from the simplest flow of the Toda hierarchy
under different parametrizations of the relevant variables(a, b) (called Flaschka variables)
by the canonically conjugated variables(x, p).

The simplest flow of the Toda hierarchy (hereafter denoted by TL) is

ȧk = ak(bk+1− bk) ḃk = ak − ak−1. (3.1)

It may be considered either under open-end boundary conditions (a0 = aN = 0), or under
periodic ones (all the subscripts are taken (modN ), so thata0 ≡ aN , bN+1 ≡ b1).

Its discretization introduced in [2, 3] (and called hereafter DTL) is given by the difference
equations

ãk = ak βk+1

βk
b̃k = bk + h

(
ak

βk
− ak−1

βk−1

)
(3.2)

whereβk = βk(a, b) are defined as a unique set of functions satisfying the recurrent relation

βk = 1+ hbk − h
2ak−1

βk−1
(3.3)
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together with an asymptotic relation

βk = 1+ hbk +O(h2). (3.4)

In the open-end case, owing toa0 = 0, we obtain from (3.3) the following finite continued
fractions expressions forβk:

β1 = 1+ hb1; β2 = 1+ hb2− h2a1

1+ hb1
; . . .

βN = 1+ hbN − h2aN−1

1+ hbN−1− h2aN−2

1+ hbN−2− . . .

− h2a1

1+ hb1

.

In the periodic case (3.3) and (3.4) uniquely defineβks asN -periodic infinite continued
fractions. It can be proved that forh small enough these continued fractions converge and
their values satisfy (3.4).

Let us recall the Lax representations of the flow TL and of the map DTL. They are
given in terms of theN ×N Lax matrixT depending on the phase space coordinatesak, bk
and (in the periodic case) on the additional parameterλ

T (a, b, λ) =
N∑
k=1

bkEkk + λ
N∑
k=1

Ek+1,k + λ−1
N∑
k=1

akEk,k+1. (3.5)

HereEjk stands for the matrix whose only non-zero entry on the intersection of thej th row
and thekth column is equal to one. In the periodic case we haveEN+1,N = E1,N , EN,N+1 =
EN,1; in the open-end case we setλ = 1, andEN+1,N = EN,N+1 = 0.

The flow (3.1) is equivalent to the matrix differential equation

Ṫ = [T ,B] (3.6)

where

B(a, b, λ) =
N∑
k=1

bkEkk + λ
N∑
k=1

Ek+1,k (3.7)

and the map (3.2) is equivalent to the matrix difference equation

T̃ = B−1TB (3.8)

where

B(a, b, λ) =
N∑
k=1

βkEkk + hλ
N∑
k=1

Ek+1,k. (3.9)

The spectral invariants of the matrixT (a, b, λ) serve as integrals of motion for the flow
TL, as well as for the map DTL.

It turns out that the flow TL is Hamiltonian with respect to three different compatible
Poisson brackets and the map DTL is also Poisson with respect to them. The spectral
invariants of the matrixT (a, b, λ) are in involution with respect to either of these brackets,
which ensures the complete (Liouville) integrability of both the flow TL and the map
DTL. All three Poisson brackets have anr-matrix origin, i.e. they arise from differentr-
matrix Poisson brackets on the matrix algebras, the matricesT (a, b, λ) forming a Poisson
submanifold for all three brackets (cf [4, 5]).
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We now give explicit formulae for the three Poisson brackets in the variables(a, b)

(putting down only the non-vanishing brackets). The first (‘linear’) bracket reads:

{ak, bk}1 = −{ak, bk+1}1 = ak. (3.10)

The second (‘quadratic’) one:

{ak, ak+1}2 = −ak+1ak {bk, bk+1}2 = −ak
{ak, bk}2 = akbk {ak, bk+1}2 = −akbk+1. (3.11)

The third (‘cubic’) one:

{ak, ak+1}3 = 2akak+1bk+1 {bk, bk+1}3 = ak(bk + bk+1)

{ak, bk}3 = −ak(b2
k + ak) {ak, bk+1}3 = ak(b2

k+1+ ak)
{ak, bk+2}3 = akak+1 {ak+1, bk}3 = −akak+1. (3.12)

The Hamiltonian functions generating the flow TL in these brackets are:

H(1) = 1
2tr(T 2) H (2) = tr(T ) H (3) = tr(log(T )) = log(det(T )).

The first two of them have local expressions in terms of the variables(a, b), namely

H(1) = 1

2

N∑
k=1

b2
k +

N∑
k=1

ak H (2) =
N∑
k=1

bk. (3.13)

4. Parametrization of the linear bracket: remembering the Toda lattice case

The Toda lattice (1.2) admits a Lagrangian formulation with a Lagrange function

L(1)(x, ẋ) = 1

2

N∑
k=1

ẋ2
k −

N∑
k=1

exp(xk − xk−1). (4.1)

A general procedure implies that the momentapk are given by

pk = ∂L(1)/∂ẋk = ẋk
so that the corresponding Hamiltonian function is

H(1) = 1

2

N∑
k=1

p2
k +

N∑
k=1

exp(xk − xk−1) (4.2)

and the system (1.2) takes the form of canonical equations of motion:

ẋk = ∂H(1)/∂pk = pk
ṗk = −∂H(1)/∂xk = exp(xk+1− xk)− exp(xk − xk−1). (4.3)

The connection with the flow TL is established by means of the following change of
variables (Flaschka and Manakov):

ak = exp(xk+1− xk) bk = pk. (4.4)

A simple calculation shows that the parametrization (4.4) leads immediately to the
linear Poisson brackets (3.10) for the Flaschka variables(a, b). Moreover, under this
parametrization the Hamiltonian functionH(1) from (4.2) coincides with that given in (3.13).

The following well known statement is also from Flaschka and Manakov.
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Proposition 1. If the Flaschka variablesak, bk are introduced according to the formulae
(4.4), then their evolution induced by (4.3) coincides with the flow TL (3.1).

The proof of this proposition (as well as of the subsequent ones) consists of a
straightforward check and will not be given in explicit detail.

So, the Newtonian equations of motion (1.2) admit a Lax representation (3.6) with the
matrices (3.5) and (3.7), for the entries of which one has:

ak = exp(xk+1− xk) bk = ẋk. (4.5)

Let us now turn to the discrete-time case. Consider the equations of motion (1.5). It is
easy to see that they admit a discrete Lagrangian formulation with the Lagrange function

31(x̃, x) =
N∑
k=1

φ1(x̃k − xk)− h
N∑
k=1

exp(xk − x̃k−1) (4.6)

whereφ1(ξ) = (exp(ξ)− 1− ξ)/h. (This Lagrange function is a difference approximation
to the continuous time one (4.1).) Hence the equations of motion (1.5) are equivalent to the
symplectic map(x, p) 7→ (x̃, p̃) with

hpk = exp(x̃k − xk)− 1+ h2 exp(xk − x̃k−1) (4.7)

hp̃k = exp(x̃k − xk)− 1+ h2 exp(xk+1− x̃k). (4.8)

We now demonstrate that they may be put in the form (3.2) (this result appeared first in
[2]).

Proposition 2. If the variablesak, bk are defined by (4.4), then their discrete-time evolution
induced by (4.7) and (4.8) coincides with the DTL (3.2), where the quantitiesβk are defined
as

βk = exp(x̃k − xk) (4.9)

and satisfy the recurrent relation (3.3).

Note that the Poisson property of the map DTL, (3.2) and (3.3), with respect to the
linear bracket (3.10) follows from this proposition.

5. Parametrization of the quadratic bracket: the case of the system (1.3)

We turn now to the system (1.3). First of all one sees that it admits a Lagrangian formulation
with

L(2)(x, ẋ) =
N∑
k=1

9(ẋk)−
N∑
k=1

exp(xk − xk−1) (5.1)

where

9(ξ) = ξ log(ξ)− ξ. (5.2)

Hence the momentapk are introduced by

pk = ∂L(2)/∂ẋk = log(ẋk)

the corresponding Hamiltonian function is equal to

H(2) =
N∑
k=1

exp(pk)+
N∑
k=1

exp(xk − xk−1) (5.3)
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and the canonical form of the equations of motion is:

ẋk = ∂H(2)/∂pk = exp(pk)
ṗk = −∂H(2)/∂xk = exp(xk+1− xk)− exp(xk − xk−1). (5.4)

To establish this time the connection with the flow (3.1), one has to introduce the
following change of variables:

ak = exp(xk+1− xk + pk) bk = exp(pk)+ exp(xk − xk−1). (5.5)

It is easy to see that the parametrization (5.5) leads immediately to the quadratic Poisson
brackets (3.11) for the Flaschka variables(a, b), and that the notationH(2) for the function
(5.3) is consistent with (3.13).

Proposition 3. If the Flaschka variablesak, bk are introduced according to the formulae
(5.5), then their evolution induced by (5.4) coincides with the flow TL (3.1).

So, the equations (1.3) admit a Lax representation (3.6) with the matrices (3.5) and
(3.7), for the entries of which one has the formulae (5.5), which are also equivalent to

ak = ẋk exp(xk+1− xk) bk = ẋk + exp(xk − xk−1). (5.6)

Turning to the discrete-time system (1.7), we find the following results. It admits a
Lagrangian formulation with

32(x̃, x) =
N∑
k=1

φ(x̃k − xk)−
N∑
k=1

ψ(xk − x̃k−1) (5.7)

where the two functionsφ(ξ), ψ(ξ) are defined by

φ(ξ) =
∫ ξ

0
log

∣∣∣∣exp(η)− 1

h

∣∣∣∣ dη ψ(ξ) =
∫ ξ

0
log(1+ h exp(η)) dη. (5.8)

Hence a symplectic map(x, p) 7→ (x̃, p̃) generated by (1.7) may be defined by the following
relations:

h exp(pk) = (exp(x̃k − xk)− 1)(1+ h exp(xk − x̃k−1)) (5.9)

h exp(p̃k) = (exp(x̃k − xk)− 1)(1+ h exp(xk+1− x̃k)). (5.10)

This map can be again reduced to (3.2) and (3.3)!

Proposition 4. If the variablesak, bk are defined by (5.5), then their evolution induced by
(5.9) and (5.10) coincides with DTL (3.2), where the quantitiesβk are given by

βk = exp(x̃k − xk)(1+ h exp(xk − x̃k−1)) (5.11)

and satisfy the recurrent relation (3.3).

This proposition implies that the map (3.2) and (3.3) is Poisson with respect to the
quadratic bracket (3.11).
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6. Parametrization of the mixed bracket

There exists a nice parametrization of the Flaschka variables, resulting in a Poisson bracket
which is a linear combination of the linear and the quadratic ones. We give in this section
two applications of this parametrization for continuous time and discrete time.

Consider first the one-parametric family of lattices (belonging, of course, to the family
(1.1)):

ẍk = (1+ αẋk)(exp(xk+1− xk)− exp(xk − xk−1)). (6.1)

The general procedure prescribes first to find the Lagrange function:

L(m)(x, ẋ) =
N∑
k=1

α−29(1+ αẋk)−
N∑
k=1

exp(xk − xk−1) (6.2)

with the function9 given in (5.2). Then the momentapk are given by

pk = ∂L(m)/∂ẋk = α−1 log(1+ αẋk)
the corresponding Hamiltonian function is equal to

H(m) =
N∑
k=1

α−2 exp(αpk)−
N∑
k=1

α−1pk +
N∑
k=1

exp(xk − xk−1) (6.3)

and the canonical form of the equations of motion is:

ẋk = ∂H(m)/∂pk = (exp(αpk)− 1)/α
ṗk = −∂H(m)/∂xk = exp(xk+1− xk)− exp(xk − xk−1). (6.4)

This time the connection with the flow TL is established by the following change of
variables

ak = exp(xk+1− xk + αpk) bk = exp(αpk)− 1

α
+ α exp(xk − xk−1). (6.5)

By a direct calculation one sees that this parametrization leads to the folllowing Poisson
brackets for the Flaschka variables:

{bk+1, bk} = αak {ak+1, ak} = αak+1ak
{bk+1, ak} = ak + αbk+1ak {bk, ak} = −ak − αbkak (6.6)

which is exactly a linear combination{·, ·}1+ α{·, ·}2.

Proposition 5. If the Flaschka variablesak, bk are introduced according to the formulae
(6.5), then their evolution induced by (6.4) coincides with the flow TL (3.1).

A discretization of the lattice (6.1) reads

α(exp(x̃k − xk)− 1)+ h
α(exp(xk − x˜ k

)− 1)+ h =
1+ hα exp(x

˜ k+1− xk)
1+ hα exp(xk − x̃k−1)

. (6.7)

It is now not very surprising that this discrete-time lattice is just a new parametrization of
the same map DTL as before!

To demonstrate this, as usual, we first represent (6.7) as an (implicit) symplectic map
in the canonically conjugated coordinates

h exp(αpk) = (α(exp(x̃k − xk)− 1)+ h)(1+ hα exp(xk − x̃k−1)) (6.8)

h exp(αp̃k) = (α(exp(x̃k − xk)− 1)+ h)(1+ hα exp(xk+1− x̃k)). (6.9)

Then the following statement holds:
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Proposition 6. If the variablesak, bk are defined by (6.5), then their evolution induced by
(6.8) and (6.9) coincides with DTL (3.2), where the quantitiesβk are given by

βk = exp(x̃k − xk)(1+ hα exp(xk − x̃k−1)) (6.10)

and satisfy the recurrent relation (3.3).

An interesting particular case of the discrete-time lattice (6.7) arises, when

α = h
so that the parameterα becomes small. Then (6.7) serves as a finite difference approximation
to the lattice (6.1), which in turn is in this case an approximation to the usual Toda lattice
(1.2). Hence we arrive at the discretization (1.6) of the Toda lattice which is different from
(1.5). For completeness, we specialize the above formulae for this important particular case.
A Lagrangian formulation of the system (1.6) is given by the Lagrange function

3m(x̃, x) =
N∑
k=1

1

2h
(x̃k − xk)2−

N∑
k=1

φ2(xk − x̃k−1) (6.11)

whereφ2(ξ) = h−1
∫ ξ

0 log(1 + h2 exp(η)) dη. This function serves as a finite-difference
approximation to (4.1), different from (4.6). An equivalent form of writing (1.6) in
canonically conjugated variables(x, p), following from the Lagrangian formulation, is:

exp(hpk) = exp(x̃k − xk)(1+ h2 exp(xk − x̃k−1)) (6.12)

exp(hp̃k) = exp(x̃k − xk)(1+ h2 exp(xk+1− x̃k)). (6.13)

Proposition 7. If the variablesak, bk are defined by (6.5) withα = h, i.e. by

ak = exp(xk+1− xk + hpk) bk = exp(hpk)− 1

h
+ h exp(xk − xk−1) (6.14)

then their evolution induced by (6.12) and (6.13) coincides with DTL (3.2), where the
quantitiesβk are given by

βk = exp(x̃k − xk)(1+ h2 exp(xk − x̃k−1)) = exp(hpk) (6.15)

and satisfy the recurrent relation (3.3).

7. Parametrization of the cubic bracket: the case of the system (1.4)

Now we perform an analogous analysis for the system (1.4) and its discretization (1.8).
Starting with the continuous-time case, we first look for a Lagrangian formulation. The

corresponding Lagrange function is readily seen to be equal to

L(3)(x, ẋ) =
N∑
k=1

log(ẋk)−
N∑
k=1

log(sinh(xk − xk−1)). (7.1)

The momentapk are given by

pk = ∂L(3)/∂ẋk = 1/ẋk

the corresponding Hamiltonian function is equal to

H(3) =
N∑
k=1

log(pk)+
N∑
k=1

log(sinh(xk − xk−1)) (7.2)
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and the canonical form of the equations of motion is:

ẋk = ∂H(3)/∂pk = 1/pk
ṗk = −∂H(3)/∂xk = coth(xk+1− xk)− coth(xk − xk−1). (7.3)

The link with the flow (3.1) is established by means of the following change of variables:

ak = 1

pkpk+1 sinh2(xk+1− xk)
bk = − 1

pk
[coth(xk+1− xk)+ coth(xk − xk−1)]

= − 1

pk

sinh(xk+1− xk−1)

sinh(xk+1− xk) sinh(xk − xk−1)
. (7.4)

The parametrization (7.4) seems to appear for the first time in [6], where it was found
that in this parametrization the flow of the Toda hierarchy with the Hamiltonian function
H = tr(T −2) coincides with the so-called peakons lattice.

A direct calculation shows that the parametrization (7.4) results in the cubic Poisson
brackets (3.12) for the Flaschka variables(a, b). It can also be demonstrated that the
function (7.2) is exactlyH(3) = log(det(T )) expressed in terms of the canonically conjugated
variables introduced by (7.4).

Proposition 8. If the Flaschka variablesak, bk are introduced according to (7.4), then their
evolution induced by (7.3) coincides with the flow TL (3.1).

Hence, the lattice (1.4) admits a Lax representation (3.6) with the matrices (3.5) and
(3.7), entries of which are given by (7.4), which are also equivalent to

ak = ẋk+1ẋk

sinh2(xk+1− xk)
bk = − ẋk sinh(xk+1− xk−1)

sinh(xk+1− xk) sinh(xk − xk−1)
. (7.5)

For the discrete-time system (1.8) we find the following results. It admits a Lagrangian
formulation with

33(x̃, x) =
N∑
k=1

log(sinh(x̃k − xk))−
N∑
k=1

log(sinh(xk − x̃k−1)). (7.6)

Hence a symplectic map(x, p) 7→ (x̃, p̃) generated by (1.8) may be presented as a set of
the following two relations:

pk = h[coth(x̃k − xk)+ coth(xk − x̃k−1)] = h sinh(x̃k − x̃k−1)

sinh(x̃k − xk) sinh(xk − x̃k−1)
(7.7)

p̃k = h[coth(x̃k − xk)+ coth(xk+1− x̃k)] = h sinh(xk+1− xk)
sinh(x̃k − xk) sinh(xk+1− x̃k) . (7.8)

And again this map can be reduced to (3.2) and (3.3)!

Proposition 9. If the variablesak, bk are defined by (7.4), then their evolution induced by
(7.7) and (7.8) coincides with DTL (3.2), where the quantitiesβk are given by

βk = sinh(xk+1− x̃k) sinh(xk − x̃k−1)

sinh(xk+1− xk) sinh(x̃k − x̃k−1)
(7.9)

and satisfy the recurrent relation (3.3).

This proposition implies that the map (3.2) and (3.3) is Poisson with respect to the cubic
bracket (3.12).
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8. Explicit discretizations

The structure of the equations (1.5), (1.6), (1.7) and (1.8) allows the following trick to be
performed: renamexk(t) to xk(t − kh). Thenx

˜ k+1, x̃k−1 on the right-hand sides will be
replaced byxk+1, xk−1, and the following discrete-time lattice systems arise:

exp(x̃k − xk)− exp(xk − x˜ k
) = h2(exp(xk+1− xk)− exp(xk − xk−1)) (8.1)

exp(x̃k − 2xk + x˜ k
) = 1+ h2 exp(xk+1− xk)

1+ h2 exp(xk − xk−1)
(8.2)

exp(x̃k − xk)− 1

exp(xk − x˜ k
)− 1

= 1+ h exp(xk+1− xk)
1+ h exp(xk − xk−1)

(8.3)

and

coth(x̃k − xk)− coth(xk − x˜ k
) = coth(xk+1− xk)− coth(xk − xk−1). (8.4)

Here (8.1) is the Hirota’s discrete-time Toda lattice [7], (8.2) is a standard-like
discretization of the Toda lattice introduced in [8], and the other two systems seem to
be new.

These new discretizations are equivalent to those studied in the previous sections, when
considered as equations on the lattice with the coordinates(t, k). However, the renaming
of xk(t) to xk(t − kh) mixes the ‘spatial’ and ‘temporal’ variables, and this changes the
properties of theinitial value problem, which we are concerned with, dramatically.

First, from a practical point of view we must remark that the new models are explicit
with respect tox̃k, while the previous models require certain nonlinear algebraic equations
to be solved (or, equivalently, continued fractions to be evaluated) in order to obtain thex̃k.

Another important difference between our new models and the old ones lies in their
algebraic,r-matrix structure. We have seen that the natural phase space for the old models
is the orbit (set of the Lax matrices) of the usual Toda lattice. Now we intend to demonstrate
that in the same sense the natural phase space for all four explicit discretizations is the orbit
(the set of the Lax matrices) of therelativistic Toda lattice. For the system (8.2) this was
first observed in [8], and for the system (8.1)—in [3]. Here we recall these results and
prove the analogous statements for the systems (8.3) and (8.4).

More precisely, we will demonstrate that all four explicit discretizations are nothing
more then four different appearances of the following system of difference equations, called
hereafter DRTL:

d̃k + h2c̃k−1 = dk + h2ck d̃k+1ck = dkc̃k. (8.5)

An equivalent form of DRTL may be obtained, if one resolves (8.5) for(c̃k, d̃k):

d̃k = dk−1
dk + h2ck

dk−1+ h2ck−1
c̃k = ck dk+1+ h2ck+1

dk + h2ck
. (8.6)

The map defined by these difference equations is Poisson with respect to three different
compatible Poisson brackets: a linear one

{ck, dk+1}1 = −ck {ck, dk}1 = ck {dk, dk+1}1 = h2ck (8.7)

a quadratic one

{ck, ck+1}2 = −ckck+1 {ck, dk+1}2 = −ckdk+1 {ck, dk}2 = ckdk (8.8)

and a cubic one

{ck, ck+1}3 = ckck+1(2dk+1+ h2ck + h2ck+1) {dk, dk+1}3 = h2ckdkdk+1

{ck, dk}3 = −ckdk(dk + h2ck) {ck, dk+1}3 = ckdk+1(dk+1+ h2ck)
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{ck, dk+2}3 = h2ckck+1dk+2 {ck+1, dk}3 = −h2ckck+1dk

{ck, ck+2}3 = h2ckck+1ck+2. (8.9)

The Lax representation for the map (8.5) may be given in terms of theN ×N matrices
depending on the dynamical variables(c, d) and an additional parameterλ:

L(c, d, λ) =
N∑
k=1

dkEkk + hλ
N∑
k=1

Ek+1,k (8.10)

U(c, d, λ) =
N∑
k=1

Ekk − hλ−1
N∑
k=1

ckEk,k+1. (8.11)

It is easy to check that the difference equations (8.5) are equivalent to the matrix equation

UL̃ = LŨ or L̃Ũ−1 = U−1L. (8.12)

In terms of the Lax matrix

T (c, d, λ) = L(c, d, λ)U−1(c, d, λ) (8.13)

(8.12) takes the form

T̃ = U−1T U = L−1T L (8.14)

which implies, in particular, that the spectral invariants of the matrixT are integrals of
motion for the map (8.5).

As observed in [5, 8], the matrixT from (8.13) serves as the Lax matrix of therelativistic
Toda hierarchy(which is also tri-Hamiltonian with respect to the brackets (8.7), (8.8) and
(8.9)).

Now we recall how (8.1) and (8.2) can be reduced to DRTL (8.5), and then show that
the same is true for (8.3) and (8.4).

We start with (8.1). It is easy to find a Lagrangian formulation of these equations with
a Lagrange function

34(x̃, x) =
N∑
k=1

φ1(x̃k − xk)− h
N∑
k=1

exp(x̃k − x̃k−1) (8.15)

(where, as in section 4,φ1(ξ) = (exp(ξ) − 1 − ξ)/h). Hence (8.1) is equivalent to a
symplectic map(x, p) 7→ (x̃, p̃) with

hpk = exp(x̃k − xk)− 1 (8.16)

hp̃k = exp(x̃k − xk)− 1+ h2 exp(x̃k+1− x̃k)− h2 exp(x̃k − x̃k−1). (8.17)

Proposition 10. Let the coordinates(c, d) be parametrized by the canonically conjugated
variables(x, p) according to the formulae

ck = exp(xk+1− xk) dk = 1+ hpk − h2 exp(xk+1− xk). (8.18)

Then their discrete-time evolution induced by (8.16) and (8.17) coincides with the DRTL
(8.5).

It is important to notice that the parametrization (8.18) results (up to the factorh) in
the linear Poisson bracket (8.7), which proves independently that the map DRTL (8.6) is
Poisson with respect to this bracket.

Turning now to (8.2), we find a Lagrangian formulation of these equations with

35(x̃, x) =
N∑
k=1

1

2h
(x̃k − xk)2−

N∑
k=1

φ2(xk − xk−1) (8.19)
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where, as in the section 6,

φ2(ξ) = h−1
∫ ξ

0
log(1+ h2 exp(η)) dη.

Hence the expression for the momentapk and their updates, equivalent to (8.2), are:

exp(hpk) = exp(x̃k − xk)1+ h2 exp(xk − xk−1)

1+ h2 exp(xk+1− xk) (8.20)

exp(hp̃k) = exp(x̃k − xk). (8.21)

Proposition 11. Let the coordinates(c, d) be parametrized by the canonically conjugated
varibles(x, p) according to the formulae

ck = exp(xk+1− xk + hpk) dk = exp(hpk). (8.22)

Then their discrete-time evolution induced by (8.20) and (8.21) coincides with DRTL (8.5).

Notice that (8.22) results (up to the factorh) in the quadratic Poisson bracket (8.8), which
proves independently that the map DRTL (8.6) is Poisson with respect to this bracket.

It remains to perform analogous considerations for explicit discretizations (8.3) and (8.4)
of the lattices (1.3) and (1.4). As already pointed out, these systems turn out to be further
realizations of the same map DRTL (8.6)!

As for the system (8.3), it is easy to find a Lagrangian formulation for it with

36(x̃, x) =
N∑
k=1

φ(x̃k − xk)−
N∑
k=1

ψ(xk − xk−1) (8.23)

whereφ(ξ) andψ(ξ) are defined by 5.8). Hence a Hamiltonian formulation of this system
is given by:

h exp(pk) = (exp(x̃k − xk)− 1)
1+ h exp(xk − xk−1)

1+ h exp(xk+1− xk) (8.24)

h exp(p̃k) = (exp(x̃k − xk)− 1). (8.25)

Proposition 12. Let the coordinates(c, d) be parametrized by the canonically conjugated
varibles(x, p) according to the formulae

ck = exp(xk+1− xk + pk) dk = 1+ h exp(pk)+ h exp(xk − xk−1). (8.26)

Then their discrete-time evolution induced by (8.24) and (8.25) coincides with DRTL (8.5).

It is easy to calculate that the parametrization (8.26) generates the following Poisson
bracket:

{ck+1, ck} = ck+1ck {dk+1, dk} = h2ck
{dk, ck} = −ck(dk − 1) {dk+1, ck} = ck(dk+1− 1). (8.27)

This is, obviously,{·, ·}2 − {·, ·}1, a linear combination of the brackets (8.7) and (8.8). Of
course, the Poisson property of the map DRTL with respect to this bracket follows from the
previous results, but proposition 12 gives an alternative way to prove this.

Finally we discuss the system (8.4). It has a Lagrangian representation with a Lagrange
function

37(x̃, x) =
N∑
k=1

log(sinh(x̃k − xk))−
N∑
k=1

log(sinh(x̃k − x̃k−1)). (8.28)
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Hence a symplectic map(x, p) 7→ (x̃, p̃) generated by (8.4) is equivalent to a set of the
following two relations:

pk = h coth(x̃k − xk) (8.29)

p̃k = h[coth(x̃k − xk)+ coth(x̃k+1− x̃k)− coth(x̃k − x̃k−1)]. (8.30)

Proposition 13. Let the coordinates(c, d) be parametrized by the canonically conjugated
variables(x, p) according to the formulae

ck = 1

(pk + h coth(xk − xk−1))(pk+1+ h coth(xk+1− xk)) sinh2(xk+1− xk)
dk = pk − h coth(xk+1− xk)

pk + h coth(xk − xk−1)
. (8.31)

Then their discrete-time evolution induced by (8.29) and (8.30) coincides with DRTL (8.5).

A direct, however somewhat tedious calculation, shows that the parametrization (8.31)
leads to the following Poisson brackets:

{ck, ck+1} = 2h−1ckck+1(dk+1− 1)+ hckck+1(ck + ck+1)

{dk, dk+1} = hck(dkdk+1− 1)

{ck, dk} = −h−1ck(dk − 1)2− hc2
kdk {ck, dk+1} = h−1ck(dk+1− 1)2+ hc2

kdk+1

{ck, dk+2} = hckck+1dk+2 {ck+1, dk} = −hckck+1dk {ck, ck+2}3 = hckck+1ck+2.

This is h−1({·, ·}3 + 2{·, ·}2 − {·, ·}1), a linear combination of the brackets (8.7), (8.8) and
(8.9). The Poisson property of the map DRTL with respect to this bracket follows from
proposition 13. This implies the Poisson property with respect to (8.9), if one takes into
account the previous results.

9. Conclusion

We have considered in this paper two recently introduced integrable lattices (1.3) and (1.4).
We have demonstrated that they may be considered as Bäcklund transformations of the
usual Toda lattice (1.2). These transformations consist of identifying the variables(a, b) in
(4.4), in (4.5) and in (7.4), which may be viewed as transformations between three sets of
variables(x, p) (and, consequently, between three sets of variables(x, ẋ)).

For each of these systems one has different integrable discretizations. Some of them
share the Lax matrix with the continuous-time prototype. These discretizations generate
Newtonian equations implicit with respect to the updatesx̃k. Other discretizations have
Lax representations with the Lax matrix defining therelativistic Toda hierarchy. These
discretizations turn out to be explicit.

All implicit discretizations turn out to be connected by Bäcklund transformations. An
underlying fact is that all of them appear from one and the same integrable map, if the
relevant variables(a, b) are parametrized by canonically conjugated ones(x, p) in different
ways, generating different Poisson brackets on the set of(a, b) (and hence on the set of
Lax matrices).

Exactly the same holds true for the explicit discretizations.
We would like to note here that all the Poisson brackets on the sets of Lax matrices of

the Toda and the relativistic Toda hierarchies were given anr-matrix interpretation in [4, 5].
Interesting open problems are suggested by the form of the Hamiltonian function

(5.3), more specifically, by the form of its ‘kinetic part’
∑N

k=1 exp(pk). First, a natural
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question arises, whether there exist other integrable systems with such a kinetic term in
the Hamiltonian, for example, systems analogous to the Calogero–Moser ones. Second, a
quantization of such Hamiltonians will lead to integrable difference operators, which might
be connected with interesting classes of special functions.

As a further interesting (and difficult) open problem we would like to mention the
task of finding and classification of all integrable discrete-time Lagrangian systems (several
examples of which are discussed in the present paper).
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